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Abstract We consider the connection to the harmonic oscillator, super-symmetric
quantum mechanics (SUSY-QM) and coherent states of the recently derived con-
strained Heisenberg “minimum uncertainty” (μ-) wavelets [Phys Rev Lett 85:5263
(2000); Phys Rev A65: 052106-1 (2002); J Phys Chem A107:7318 (2003)]. We ana-
lyze several new types of raising and lowering operators,which also can be viewed
as arising from a (non-unitary) similarity transformation of the Harmonic Oscillator
Hamiltonian and ladder operators. We show that these new ladder operators lead to
a new SUSY formalism for harmonic oscillation, so that the μ-wavelets naturally
manifest SUSY properties. Using these new ladder operators, we construct coherent
and supercoherent states for the oscillator. In the discussion, we consider possible
implications of similarity transformations for quantum mechanics. In an appendix we
consider the classical limit of the μ-wavelet oscillator.
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1 Introduction

This paper is the fourth in a series of studies of constrained minimum Heisenburg
uncertainty states (the minimum uncertainty (μ-) wavelets and the related Hermite
Distributed Approximating Functionals (HDAFs). Of particular interest here are the
fundamental connections of μ-wavelets to the harmonic oscillator and Supersym-
metric Quantum Mechanics (SUSY-QM). We discuss these in greater detail below.
However, it is useful to begin with some general remarks regarding SUSY-QM, since
its relevance to chemical physics is much less clear. The original setting for SUSY was
high energy physics and field theory [1–3]. The theory provides a possible pathway
towards unifying all of the “elementary particles” and interactions, including gravity.
A hallmark of SUSY is the appearance of “sparticles”, which basically is a conse-
quence of the fact that, in SUSY, all fundamental particles occur in pairs, one being
a boson and the other a fermion (i.e., they differ in spin by h̄/2). In the basic SUSY
theory, the sparticles are isoenergetic, so that the energies of the two “sector” Hamil-
tonians are the same, with the exception of the ground state of the boson sector. In the
so-called “good SUSY” the boson ground state has zero energy and there is no corre-
sponding fermion state. All of this seemingly would have nothing to do with problems
in chemical physics. However, it has been known for some time that the SUSY ideas
can also be applied to non-relativistic quantum systems [4,5]. Until now this has been
primarily of academic interest, although it does enable one to obtain analytical ground
state wavefunctions for the boson sector (for one dimensional systems). This comes
about through the intimate connection of SUSY-QM and the ladder operator approach
to the harmonic oscillator (see more below).

At any rate, the remarkable thing is that in SUSY-QM, in addition to the “bosonic”
and “fermionic” Hamiltonian partners, in certain cases one can introduce a hierarchy
of Hamiltonians [4,5]. All of these share a common spectrum, except that the ground
state of each succeeding member of the hierarchy is degenerate with a succeeding
excited state of the original Hamiltonian. That is, the ground state of the sector 2
Hamiltonian has the same energy as the first excited state of the (original) sector 1
Hamiltonian. The ground state of the sector 3 Hamiltonian is degenerate with the first
excited state of the second sector Hamiltonian and with the second excited state of
the sector 1 Hamiltonian. The hierarchy of sector Hamiltonians continues up to the
last excited (bound state) of sector 1. Remarkably, this means that excitation energies
can be calculated for the sector 1 Hamiltonian by solving a succession of nodeless
ground states of the higher sector Hamiltonians. It was observed by Kouri, Bittner
and co-workers [6–9] that this could provide much more accurate excitation energies
using the standard Rayleigh-Ritz variational method (RRVM), but applied succes-
sively to obtain ground states. That is, one avoids having to calculate relative phases
of the wavefunctions to high accuracy in this approach [8]. Similarly, Bittner, Kouri
and co-workers showed that this could also be applied in the context of the Quantum
Monte Carlo (QMC) method, since one is always calculating ground state energies of
nodeless wavefunctions [7].

Finally, the SUSY-QM approach also leads to a simple, linear method to generate
the excited state wavefunctions from the hierarchy of ground state wavefunctions.
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This is achieved by the use of “charge operators” (analogous to the harmonic operator
raising and lowering operators) that transfer wavefunctions between sectors [4–9].

In light of the newly discovered potential significance of SUSY-QM for chemi-
cal physics, we are continuing our study of the inter-connections among μ-wavelets,
HDAFs, the harmonic oscillator and SUSY-QM.

Of course, the harmonic oscillator is fundamental to a vast range of physics, includ-
ing the electromagnetic field, spectroscopy, solid state physics, coherent state theory,
field theory and string theory, as well as SUSY-QM. Key elements in the wide spread
relevance of the harmonic oscillator are the raising and lowering ladder operators
which are used to factor the system Hamiltonian. SUSY-QM, which serves as a valu-
able model for introducing concepts such as boson and fermion dynamics, sponta-
neous symmetry breaking, field theory and string theory [1–3], can be viewed as
generalizing the operators used for factorization of the harmonic oscillator Hamilto-
nian. Although historically, the factorization procedure has its roots in the operator
treatment of the harmonic oscillator, it also has played a fundamental role, e.g., in
the quantum mechanics of the hydrogen atom and in the theory of angular momen-
tum [10–13]. In all instances, a factorization strategy involving raising (creation) and
lowering (annihilation) operators is central.

The strategy of factoring the Schrödinger operator, and thereby the Schrödinger
equation is, of course, equivalent to replacing a second order differential equation with
first order differential equations, which are typically much easier to solve. Another
example of factorization is Dirac’s treatment of the relativistic electron, which leads
inexorably to the introduction of spin. From this point of view, it is not surprising that
such factorizations in SUSY-QM make it possible to introduce spin-like degrees of
freedom directly into non-relativistic quantum mechanics [4,5]. In the case of the har-
monic oscillator and angular momentum, this basic factorization leads to raising and
lowering operators that are Hermitian conjugates of one another. This fact leads to nice
features of the associated algebra for the relevant operators. However, the boson and
fermion sector states are simply the even and odd parity HO states, respectively. This
basic factorization is intimately connected with the fact that the harmonic oscillator

Hamiltonian is the sum of squares of operators
(

ĤH O = 1
2

(
P̂2/m + mωQ̂2

))
.

The fundamental connection to the Heisenberg uncertainty principle is also imme-
diately apparent because minimum uncertainty states are easily shown to be eigenvec-
tors of the same lowering operator that results from factoring the harmonic oscillator
Hamiltonian. In addition, it is clear that the structure of the harmonic oscillator Hamil-
tonian is the same in either the coordinate or momentum representations, which is also
a fundamental consequence of minimum uncertainty, leading to a state which behaves
identically (to within a constant) under the action of the position and momentum oper-
ators. Consequently, ĤH O commutes with the Fourier transform, which immediately
implies that the harmonic oscillator eigenstates (which are non-degenerate in 1 D) are
also eigenstates of the Fourier transform operator.

The fact that canonical coherent states are defined as the eigenstates of the lowering
operator implies that they also are fundamentally connected to the harmonic oscillator
and the electromagnetic field (quantum optics) [14–16]. Since they also minimize the
uncertainty product associated with canonically conjugate pairs of observables, we
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also expect that coherent states should be important in any problem where simulta-
neous localization in a pair of canonically conjugate observables is important (e.g., in
semiclassical dynamics).

All of these properties are unchanged under any unitary transformation [17,18].
Classically, this translates to the form of the equations of motion being unchanged
under a canonical transformation [19–22], and generally, these are the sorts of trans-
formations that are normally investigated in quantum mechanics (see, however, ref-
erence 17). However, one might well also ask what happens when one carries out
a non-unitary similarity transformation in quantum mechanics, and how does this
get reflected in the raising and lowering operators, coherent states and SUSY-QM.
Classically, this is the question of what happens when one carries out an “extended
canonical transformation”[19], which is characterized by a scaling factor (Jacobian)
that differs from one. Quantum mechanically, one expects profound effects of such
transformations, not only on the mathematical structure of the theory, but on such
major properties as the uncertainty product of position and momentum.

First, it is obvious that the transformed raising and lowering operators will no longer
be related by Hermitian conjugation [17,18]. The spectrum and commutation relations
of the transformed position and momentum operators, and of the raising and lowering
operators, will be unchanged, however. In addition, if the similarity transformation
does not possess a bounded inverse (as x → ±∞ ), the transformed harmonic oscilla-
tor eigenstates will no longer be a Riesz basis [23–25] for Hilbert space. Furthermore,
as has been pointed out previously, in general, non-unitary similarity transformations
result in non-Hermitian Hamiltonians [26–29]. Like in reference 17, we also consider a
system for which PT symmetry is satisfied by the non-Hermitian μ-wavelet harmonic
oscillator Hamiltonian.

In references [32,33], theμ-wavelets (and their sums over integerμ-wavelets only,
which sums are called Hermite Distributed Approximating Functionals or HDAFs),
were shown to be constrained minimum Heisenberg uncertainty solutions, and to be
members of a hierarchy of such states, beginning with the Gaussian. Indeed, the
μ-wavelets are precisely generalized Gaussians [32,33]. Both the HDAFs and
μ-wavelets are solutions of the same first order differential equation, which arises
from the constrained minimization of the Heisenberg uncertainty product, differing
only in their boundary conditions. The essence of the constrained minimization is to re-
quire that the uncertainty in one observable (either position or momentum) be reduced
(squeezed) but with the minimum increase in the uncertainty (due to the change in
the wavefunction) of the canonically conjugate observable. The constraint essentially
guarantees that the minimizing solution cannot also be a Gaussian.

Recently, we reported the initial study of the relation between these μ-wavelets
and the harmonic oscillator eigenstates [34,35]. In that work, it was shown that the
μ-wavelets can be viewed as being generated from the harmonic oscillator eigenstates
by a (non-unitary) similarity transformation applied to the Hamiltonian. Certain math-
ematical properties of theμ-wavelets were seen to be a consequence of the fact that the
inverse transformation was not bounded as x → ±∞. Thus, unlike the usual unitary
transformations in quantum mechanics, which correspond to canonical transforma-
tions (having a Jacobian equal to 1) in classical mechanics [19], this transformation
did not preserve either the orthogonality or the completeness of the harmonic oscillator
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states in Hilbert space. In fact, the “biorthogonal (analysis) vectors” associated with
the μ-wavelets are simply Hermite polynomials [34], which do not belong either to
Hilbert or Banach space. Rather, they are distributions.

However, this initial study did not explore the detailed implications of the similarity
transformation with regard to SUSY-QM, super-coherent states or the existence of two
distinct lowering operators.

In the initial study that derived the μ-wavelets from the harmonic oscillator eigen-
states, it became obvious that the usual raising and lowering operators were sig-
nificantly changed due to the non-unitary similarity transformation [34]. First, the
transformed raising and lowering operators are no longer related through Hermitian
conjugation [17,18,26–31], although they still result in a factored Hamiltonian for the
oscillator. It also was found that the new ladder operators could, themselves, be fac-
tored so that additional, fractional raising and lowering operators naturally arose [34].
The original transformed raising and lowering operators transformed states within
either the even parity eigenstates or within the odd parity eigenstates, while the frac-
tional raising and lowering operators transformed states between the two parities. In
the case of the parity-changing operators, there also arose two distinct lowering oper-
ators, with one being simply the inverse of the parity-changing raising operator. It
appeared that the second lowering operator was superfluous. Thus, the significance of
the additional lowering operator was not explicated beyond observing that it was con-
nected with generating theμ-wavelets that are associated with the odd parity harmonic
oscillator eigenstates. Furthermore, the “quantum number” associated with these odd
symmetry states was found to be a half-odd-integer, while that for the even symmetry
states was an integer [34].

These considerations suggest that further study of the μ-wavelets and the related
ladder operators is worthwhile. Herein we report the further analysis of these raising
and lowering operators and explore their significance further in relation to the harmonic
oscillator, supersymmetric (SUSY) quantum mechanics, coherent and super-coherent
states and the classical limit of the μ-wavelet oscillator [32,33,36–39].

This paper is organized as follows. In Sect. 2 we review how the new raising and
lowering operators result from the Heisenberg uncertainty principle, since this is useful
to establish our notation. There are several distinct sets of these operators all of which
operators differ from those for the standard harmonic oscillator. In Sect. 3, we discuss
the use of the μ-wavelet operators for the harmonic oscillator. Section 4 shows how
the full μ-wavelet SUSY structure is naturally obtained, including the supercharge
and Witten parity operators. In Sect. 5, we discuss coherent and supercoherent states
[14–16,40–42] in the μ-wavelet theory. Finally, in Sect. 6 we discuss the results and
indicate future directions of research. In an appendix, we present the classical limit of
the μ-wavelet harmonic oscillator.

2 Brief review of the µ-wavelet hierarchy, raising and lowering operators

We begin with a brief summary of the origin of μ-wavelets from Heisenberg’s uncer-
tainty principle. The standard minimization of the uncertainty product makes use of
the Schwartz inequality, yielding
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(�x)2 (�k)2 = 〈φσ0 |x̂2|φσ0 〉〈φσ0 |k̂2|φσ0 〉
〈φσ0 |φσ0 〉 ≥

∣∣∣〈φσ0 |x̂ k̂|φσ0 〉
∣∣∣
2

〈φσ0 |φσ0 〉2 = 1

4
(1)

where
[
x̂, k̂

]
= i 1̂, implying that the set of operators

{
x̂, k̂, 1̂

}
constitute a Heisen-

berg-Weyl Lie Algebra [16]. The minimization of this uncertainty product produces
the following equation [16,32,33] for the Gaussian with an arbitrary complex constant
σ ,

x̂ |φσ0 〉 = −iσ 2k̂|φσ0 〉 (2)

This equation defines the Gaussian as an eigenstate of the lowering operator [14–16],
âH O ≈ x̂ + iσ 2k̂. It is easy to see that here the eigenvalue is zero; other eigenvalues
correspond to minimum uncertainty coherent states having nonzero average position
and momentum. The corresponding raising operator, â+

H O ≈ x̂−iσ 2k̂, can be obtained
in many ways (e.g., from the harmonic oscillator theory or the requirement that the
commutator of the raising and lowering operators be proportional to the identity).

Now suppose we begin with this state of absolute minimum uncertainty, |φσ0 〉 and
introduce a variation in the state to reduce further the uncertainty in either �x̂ or �k̂
(i.e., we “squeeze” the state). A new “minimum uncertainty” state (the μ-wavelet and
the HDAF) is defined by

|ψσ1 〉 = |φσ1 〉 + |φσ0 〉 ≡ |φσ1 〉 + |ψσ0 〉 (3)

In the usual approach to squeezing coherent states, the resulting state,|ψσ1 〉, is also a
Gaussian and the uncertainties are of the form�x = σ√

2
and�k = 1√

2σ
, so that their

product is one half. We, however, insist that the new state |ψσ1 〉 cannot be a Gaussian,
and note, therefore, that the overall uncertainty product�x�k must increase [32,33].
We constrain the allowed choices for |φσ1 〉 as follows. For the purpose of illustration,
we choose to squeeze�x (the analysis when squeezing�k is parallel), and we require
that the following quantity, �2

f , be constant for all allowed |φσ1 〉:

�2
f ≡ 〈ψσ1 |x̂2|ψσ1 〉

〈ψσ1 |ψσ1 〉2 [〈φσ0 |k̂2|φσ0 〉 + 〈φσ1 |k̂2|φσ0 〉 + 〈φσ0 |k̂2|φσ1 〉] (4)

The positive definite quantity, �2
v is then defined by

�2
v ≡ 〈ψσ1 |x̂2|ψσ1 〉〈φσ1 |k̂2|φσ1 〉

〈ψσ1 |ψσ1 〉2 (5)

and one easily verifies that [32,33]

(�x�k)2 = �2
f +�2

v (6)
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Clearly, since�2
f is fixed for all possible |φσ1 〉, (�x�k)2 will be a minimum provided

�2
v is a minimum. Since this is greater than 0, the fixed value of �2

f sets the floor

below which (�x�k)2 cannot go. The minimization of Eq. 6 is carried out in a manner
identical to what is done for Eq. 1. Note that one is minimizing the full uncertainty in
x̂ , but only the uncertainty in k̂ that comes solely from |φσ1 〉. We obtain

[
x̂ + iσ 2k̂

]
|φσ1 〉 = iσ 2k̂|φσ0 〉 (7)

Obviously, the operator x̂ + iσ 2k̂, which is, to within a constant factor, the standard
lowering operator, is applied to |φσ1 〉, which unlike the state, |φσ0 〉, is not annihilated.
From the form of Eq. 7, iσ 2k̂ appears to be a type of raising operator [34]. Repeating
the minimization process, one easily finds for arbitrary indexed φσj+1,

[
x̂ + iσ 2k̂

]
|φσj+1〉 = iσ 2k̂|φσj 〉 ≡ |φσj< j ′< j+1〉 (8)

Since j and j + 1 are both integers and the operator on the LHS of Eq. 8 is clearly a
lowering operator while the operator on the right is apparently a raising operator, this
suggests the last equality, where j ′ is fractional [34]. Following Hoffman and Kouri
[32,33], for positive index j , we call the |φ j 〉 vectors “μ-wavelets”. From Eq. 8, we
can now define a new, “ μ-wavelet lowering operator” as:

âμ =
( −i

σ 2k̂

)
x̂ + 1 (9)

(Note that âμ is the product of ( −i
σ 2 k̂
) and the “standard” lowering operator, (x̂ + iσ 2k̂))

Obviously, we can express this in the x−representation as

âμ =
(

1

σ 2 ∂
−1

)
x + 1 (10)

where ∂ ≡ ∂
∂x , ∂

−1 ≡ (
∂
∂x

)−1
. Strictly for the sake of simplicity, we shall choose

the constant of integration for
(
∂
∂x

)−1
to be zero. In the k−representation, the new

lowering operator has the form

âμ =
(

1

σ 2k

)
∂

∂k
+ 1 (11)

One easily finds that if â+
μ is given by

â+
μ = σ 2k̂2

2
(12)
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then, from Eqs. 2 and 9, we can easily establish the absolute minimum uncertainty
state expression,

âμ|φσ0 〉 = 0 (13)

Therefore, in the momentum representation, this state is

〈k|0, σ, μ〉 =
(
σ 2

π

) 1
4

e
−σ2k2

2 (14)

where 〈k|0, σ, μ〉 ≡ 〈k|φσ0 〉.
It is important to stress that this differs from the usual harmonic oscillator ground

state, whose Gaussian exponent is −σ 2k2

4 ; i.e., the usual HO ground state is the square
root of the Hermite polynomial generator [34]. The distinction is more apparent when
one examines the excited states of the μ-wavelet harmonic oscillator. Similarly, using
Eq. 10, we obtain the x-representation ground state,

〈x |0, σ, μ〉 =
(

1

πσ 2

) 1
4

e
−x2

2σ2 . (15)

It is then easy to construct the n-th momentum representation μ-wavelet state by
applying the raising operator, Eq. 12, and requiring the L2-norm of the state to be
unity, yielding

〈k|n, σ, μ〉 = σ 2n+ 1
2

{(
2n − 1

2

)!} 1
2

k2ne
−σ2k2

2 . (16)

Also, we can express this n-th state in terms of powers of the raising operator
(
â+
μ

)n :

〈k|n, σμ〉 = αn(â
+
μ )

n〈k|0, σ, μ〉, (17)

where αn = π1/42n

{(2n−1/2)!}1/2 ensures a unit L2-norm. One can adjust the energy spacing

between the states by defining the raising operator α̂+
μ = 2â+

μ then

α̂+
μ = −σ 2∂2 or α̂+

μ = −σ 2k2. (18)

Note that α̂μ = âμ. We remark that the above expressions imply the existence of a
fractional raising operator (see the next section). Then Eq. 17 becomes

〈k|n, σ, μ〉 = Cn(α̂
+
μ )

n〈k|0, σ, μ〉 (19)
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Because Cn = αn/2n , we easily find that

Cn = π1/4

{(2n − 1
2 )!}

1
2

(20)

There are, of course, several methods to obtain the coordinate representation of the
n-th μ-wavelet [35]. Here, we use the raising operator to generate the n-th state from
the ground state, Eq. 19,

〈x |n, σ, μ〉 = Cn(α̂
+
μ )

n〈x |0, σ, μ〉
= (−1)nCnσ

2n∂2n〈x |0, σ, μ〉
= (−1)nσ 2n−1/2

{(2n − 1
2

)!} 1
2

e
−x2

2σ2 (∂ − x

σ 2 )
2n

= (−1)n

2nσ 1/2{(2n − 1/2)!}1/2 e
−x2

2σ2 Hn

(
x√
2σ

)
(21)

We again see that the argument of the Hermite polynomial is exactly the square root of
the argument of the Gaussian. In the standard harmonic oscillator states, the argument
of the Hermite is the square root of twice the argument of the Gaussian. Explicitly,
the μ-wavelet and harmonic oscillator states are related by [34]

〈x |n, σ, μ〉 = (−1)n
{
(2π)1/2

(2n)!
(2n − 1/2)!

}1/2

e
−x2

4σ2 〈x |2n,
√

2σ, H O〉 (22)

This relationship corresponds to a similarity transformation, connecting the usual har-
monic oscillator states to the μ-wavelet states [34]. Clearly, the inverse transform in

the x-representation is simply multiplication by e
x2

4σ2 , which is obviously unbounded
on the x-domain −∞ < x < ∞. Therefore, this similarity transformation does not
produce a Riesz basis from the harmonic oscillator states [23–25,34].

It must also be noted that since the quantum index, n appears on the right hand side
of Eq. 22 as 2n, it is perfectly allowable for n to be a half-odd-integer [34,35]. In the
case of half-odd-integer values of n, the state defined by Eq. 22 is

〈
x |n

2
, σ, μ

〉
= (−i)n

2n/2σ 1/2{(n − 1/2)!}1/2 e
−x2

2σ2 Hn(x/
√

2σ) (23)

These half-odd-integer μ-wavelet states are clearly related to the odd parity harmonic
oscillator eigenstates, but they will be interpreted, using the structure of super-
symmetry, as the elements of the fermion sector. They can be viewed as the con-
sequence of the existence of new half-odd-integer raising and lowering operators for
the μ-wavelets.
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3 Fractional-wavelet ladder operators and the harmonic oscillator

Having obtained the fundamental definitions of the μ-wavelet ladder operators that
preserve the parity of the state to which they are applied, we now show how the par-
ity changing (fractional) ladder operators naturally arise.. In the standard theory, one
factors the harmonic oscillator Hamiltonian by introducing the raising and lowering
“factor” operators. For μ-wavelet oscillators, we note that, from Eq. 12 or 18, we can
factor the raising operator, α̂+

μ , by defining â+
1/2 such that [35]

α̂+
μ =

√
α̂+
μ α̂

+
μ = â+

1/2â+
1/2 (24)

so that we have

â+
1/2 =

√
α̂+
μ = σ k̂ (25)

Requiring that the commutator relation [â1/2, â+
1/2] = 1 be satisfied, the corresponding

lowering operator is found to be

â1/2 = −i

(
x̂

σ
+ iσ k̂

)
, (26)

which also results from multiplying Eq. 8 by − i
σ

. This establishes the conjecture that
these equations imply the existence of another state between that labeled by j and
that labeled by j + 1. We note that â1/2 differs by a phase from the usual harmonic
oscillator lowering operator, and it is now paired with the raising operator â+

1/2. With
the help of Eq. 11, it is also convenient to factor the lowering operator, α̂μ by defining

α̂μ ≡ ˆ̃a1/2â1/2 (27)

where the operator

ˆ̃a1/2 = 1

σ k̂
(28)

was introduced earlier in references [34,35]. For simplicity, we again take the constant
of integration to be zero. There are now two distinct lowering operators that occur as
factors to produce α̂μ, reflecting the facts that one allows the satisfaction of a com-
mutator condition with the raising operator, â+

1/2, and the other is the inverse of â+
1/2.

Such an inverse corresponds to a different sort of lowering operation, of course, and it
implies that an anti-commutator relation appropriate for fermions will be satisfied. As
might be expected, these new operators play an important role in the supersymmetric
coherent state structure in the μ-wavelet theory.

Similar to the situation of the standard harmonic oscillator, these operators raise or
lower the μ-wavelet quantum index, but now by 1

2 rather than by 1. Then the ground
state is denoted by |0〉, the first excited state by |1/2〉, etc.
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For the raising operators, one can show that

â+
1/2|n〉 = (2n + 1/2)

1
2 |n + 1/2〉 (29)

α̂+
μ |n〉 = √

(2n + 1/2)(2n + 3/2)|n + 1〉 (30)

The above equations are consistent with the original definitions, Eq. 11 and 29. For
the lowering operators, we find

â1/2|n〉 = 2n

(2n − 1/2)1/2
|n − 1/2〉 (31)

ˆ̃a1/2|n〉 = 1

(2n − 1/2)1/2
|n − 1/2〉 (32)

α̂μ|n〉 = 2n√
(2n − 1/2)(2n − 3/2)

|n − 1〉 (33)

One may define two distinct μ-wavelet “harmonic oscillator” Hamiltonians;

ĤB |n〉B = α̂+
μ α̂μ|n〉B = 2n|n〉B = â+

1/2â+
1/2|n〉B (34)

where here, the index n of |n〉B takes on only even values: n = 0, 2, 4, . . . , 2n, and

ĤF |n〉F = α̂μα̂
+
μ |n〉F = 2(n + 1)|n〉F (35)

where here the index n of |n〉F takes on only odd values: n = 1, 3, 5, . . . , 2n + 1.
In this description, the μ-wavelet oscillator has a double degeneracy for each level
except for the zero energy ground state. We see then that

ĤF = ĤB + 2 (36)

This immediately shows that the μ-wavelets naturally admit a supersymmetric struc-
ture [2–5,36–39], like that of the standard harmonic oscillator. Here ĤB is identified
as the boson sector Hamiltonian and ĤF is identified as the fermion sector Hamilto-
nian. Because of Eq. 36, this corresponds to good SUSY. However, rather than use the
subscripted state notation, |n〉B and |n〉F , we can simply replace n with n/2. Then,
we have the half-odd-integer states, satisfying

â+
1/2|n/2〉 = (n + 1/2)1/2

∣∣∣n + 1

2

〉
(37)

â1/2|n/2〉 = n ˆ̃a1/2|n/2〉 = n

(n − 1/2)1/2

∣∣∣n − 1

2

〉
(38)
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The two possible Hamiltonians for the half-odd-integer states are given by

Ĥ (1)
1/2

∣∣∣n

2

〉
= â+

1/2â1/2

∣∣∣n

2

〉
= n

∣∣∣n

2

〉
(39)

Ĥ (2)
1/2

∣∣∣n

2

〉
= â1/2â+

1/2

∣∣∣n

2

〉
= (n + 1)

∣∣∣n

2

〉
(40)

In the case of SUSY-QM, the above Eqs. 39 and 40 show that â1/2 and â+
1/2 provide

an interesting alternative to the α̂μ, α̂+
μ for the μ-wavelet states. In turn, these also

differ from the usual harmonic oscillator raising and lowering operators, â+ and â ;
see Eqs. 9 and 12. Note that ˆ̃a1/2 is just the inverse of the raising operator, â+

1/2, and
its effect on the state | n

2 〉 is also dependent upon the lowering operator, â1/2, as can
be seen in Eq. 38. On the surface, it would appear that the â1/2 and â+

1/2 operators

are sufficient to describe all of the μ-wavelet states without need for ˆ̃a1/2. The opera-

tor â1/2 annihilates the ground state, while ˆ̃a1/2 does not annihilate the ground state.

However, in the momentum space, ˆ̃a1/2 is simpler to use to generate the lower states

than â1/2. In the coordinate space, â1/2 is easier to use to generate the states than ˆ̃a1/2

because ˆ̃a1/2 is an integral operator in this representation.
We summarize the relationships among these operators associated with theμ-wave-

lets as follows

[
âμ, â+

μ

] = [
α̂μ, α̂

+
μ

] =
{[ ˆ̃a1/2â1/2, â+

1/2

]
, â+

1/2

}
=

{ ˆ̃a1/2, â+
1/2

}
= 2 (41)

[
â1/2, â+

1/2

]
= 1 (42)

[
âμ, âμ

] = [
â+
μ , â+

μ

] = [
â1/2, â1/2

] =
[
â+

1/2, â+
1/2

]
=

[ ˆ̃a1/2, â1/2

]

=
[ ˆ̃a1/2, â+

1/2

]
= 0

As usual, {, } denotes the anticommutator.

4 The full supersymmetric structure of the µ-wavelet harmonic oscillator

As is clear from Eqs. 34–36, the eigenenergies of the μ-wavelets possess the SUSY
structure [2,3,36–39]. To explicate this, we briefly outline the SUSY approach to the
ordinary Harmonic Oscillator. We recall that the harmonic oscillator satisfies the well
known Schrödinger equation:

{−h̄2

2m

d2

dx2 + 1

2
mω2x2

}
ψ = εψ. (43)

As is customary, we simplify this to

ĤH Oψ = (−∂2 + x2)ψ = εψ (44)
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where, x → x
√

mω/h̄, ε → 2ε/h̄ω. The original boson (B(O)) SUSY harmonic
oscillator Hamiltonian ĤB(O) and the original fermion (F(O)) SUSY harmonic oscil-
lator Hamiltonian ĤF(O) are well-known to be

ĤB(O) = â+â = (−∂ + x)(∂ + x) = HH O − 1 (45)

ĤF(O) = ââ+ = (∂ + x)(−∂ + x) = HH O + 1 (46)

ĤB(O)|n〉 = â+â|n〉 ĤF(O)|n〉 = ââ+|n〉 = 2(n + 1)|n〉 (47)

ĤH O |n〉 = (â+â + 1)|n〉 = (2n + 1)|n〉 (48)

Therefore,

ĤF(O) = ĤB(O) + 2; (49)

Clearly the μ-wavelet Hamiltonians, ĤB , ĤF Eqs. 34–36, obey similar equations as
those of the original SUSY Hamiltonians, Eqs. 45–49. It is interesting to explore the
details of the μ-wavelet SUSY. We treat the states of integer quantum indices as the
boson sector and the states with the half-odd-integer quantum indices as the fermion
sector. Then the boson sector Hamiltonian is

ĤB = α̂+
μ α̂μ = â+

1/2â1/2, (50)

and we note that the new fractional lowering operator, ˆ̃a1/2, is immediately elimi-
nated due to the ordering of the α̂+

μ and α̂μ in the boson sector Hamiltonian. The
corresponding fermion sector Hamiltonian is

ĤF = α̂μα̂
+
μ = â+

1/2â1/2 − 1 = ĤB − 1 (51)

where use of the commutator [â1/2, â+
1/2] = 1 is required to eliminate ˆ̃a1/2 in the fer-

mion sector Hamiltonian. Thus, it appears that the ˆ̃a1/2 ladder operator is not required
in the SUSY theory of the μ-wavelet oscillator. This curious state of affairs will be
the subject of a subsequent investigation [43].

Now, let us consider the good SUSY μ-wavelet Hamiltonians further. Using
Eqs. 50,51, the good SUSY Schrödinger equations for the two sectors are

ĤB |n〉 = â+
1/2â1/2|n〉 = 2n|n〉 (52)

ĤF(G)|n + 1/2〉 = â+
1/2â1/2|n + 1/2〉 = 2 (n + 1/2) |n + 1/2〉 (53)

Using Eqs. 52 and 53, the good SUSY Hamiltonian and Schrödinger equation are

Ĥ =
(

ĤB 0
0 ĤF(G)

)
, (54)
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and

Ĥ

( |n〉
|n − 1/2〉

)
= 2n

( |n〉
|n − 1/2〉

)
, n ≥ 1. (55)

When n = 0, the state is defined as
(|0〉

0

)
, because the state |−1/2〉 = 0. In SUSY-QM,

a fundamental feature is the expression of the Hamiltonian in terms of the
so-called “super-charge operators”. These have the property that their anti-commutator
equals the SUSY Hamiltonian. The corresponding μ-wavelet supercharge operators
are defined by

Q̂ ≡
(

0 0
â1/2 0

)
, Q̂+ ≡

(
0 â+

1/2
0 0

)
(56)

The anticommutators of these operators are

{Q̂, Q̂+} =
(

â+
1/2â1/2 0

0 â1/2â+
1/2

)
= Ĥ (57)

{Q̂, Q̂} = {Q̂+, Q̂+} = 0 (58)

The above equations obviously constitute a SUSY algebra, which satisfies Lie’s super-
algebra. To verify conservation of supercharge [36–39], we compute the commutators
of Q̂ and Q̂+ with the SUSY Hamiltonian:

[Q̂, Ĥ ] = [Q̂, Q̂ Q̂+ + Q̂+ Q̂] = Q̂
[

Q̂, Q̂+]
+ [Q̂, Q̂+]Q̂ = 0 (59)

Similarly, one has

[Q̂+, Ĥ ] = 0 (60)

Because charge is conserved, this Hamiltonian contains coordinates which are quan-
tized by commutators and anticommutators. Obviously, Eq. 56 can be expressed in
the form

Q̂ = â1/2q̂+ =
(

−i
x̂

σ
+ σ k̂

)
q̂+ Q̂+ = â+

1/2q = σ k̂q̂ (61)

where,

q̂+ = σ̂− =
(

0 0
1 0

)
, q̂ = σ̂+ =

(
0 1
0 0

)
, (62)

[q̂+, q̂] =
(

0 0
0 −1

)
= −σ̂z (63)

{
q̂, q̂+} = 1 {q̂, q̂} = {q̂+, q̂+} = 0 (64)
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As usual, [, ] denotes the commutator and {, } the anticommutator. and the σ̂ ’s are Pauli
matrices. Thus, using Eq. 57 or 61, we obtain the Hamiltonian of the supersymmetric
μ-wavelets.

Because these energy eigenvalues are 2n, it is convenient to scale the Hamiltonian
by a factor of 1/2:

Ĥ B
μ−wavelet = 1

2
(σ 2k̂2 − i k̂ x̂) = 1

2
ĤB (65)

Ĥ F(G)
μ−wavelet = 1

2
(σ 2k̂2 − i x̂ k̂) = 1

2
ĤF (66)

In this form, the transition from the quantum to the classical limit is easily carried out
as we discuss it in detail in the Appendix (of course, in the classical limit, the boson
and fermion sector Hamiltonians yield the same result, namely Hμ−wavelet). Also, we
can express these Hamiltonians, using the half-integer raising and lowering operators,
according to

Ĥ± = 1

2

{
â+

1/2, â1/2

}
± 1

2

[
â+

1/2, â1/2

]
, (67)

where the + sign denotes fermions and the − sign denotes bosons. We interpret the
Hamiltonian forms of Eqs. 65 and 66 as implying that the potential of the μ-wavelet
harmonic oscillator depends upon both the velocity and position while the original
harmonic oscillator potential depends upon the position only. Even though Eqs. 65
and 66 are the same in the limit of classical mechanics, they differ by one energy
unit in quantum mechanics. Note that at this stage, the extra lowering operator, ˆ̃a1/2,
appears to be completely unnecessary!

From the viewpoint of SUSY-QM, it is clear from Eq. 66 that the superpotential
of the μ-wavelets is the same as the harmonic oscillator’s “shape invariant” potential.
Like the supercharge operator, the Witten parity [34], Ŵ , of the SUSY μ-wavelets is
conserved. The self-adjoint operator, Ŵ obeys the relations

Ŵ = 2

Ĥ
Q̂ Q̂+ − 1 = [Q̂, Q̂+]

{Q̂, Q̂+} (68)

[Ŵ , Ĥ ] = 0 {Ŵ , Q̂} = {Ŵ , Q̂+} = 0 Ŵ 2 = 1 (69)

For our μ-wavelets, we find directly that

Ŵ = [Q̂, Q̂+]
{Q̂, Q̂+} =

(
−â+

1/2â1/2 0
0 â1/2â+

1/2

)

(
â+

1/2â1/2 0
0 â1/2â+

1/2

) =
(−1 0

0 1

)
(70)
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The Witten parity is related to the fermion number operator, F̂ , defined as

F̂ = f̂ + f̂ = q̂+q̂ =
(

0 0
0 1

)
(71)

where f̂ + = â+
1/2q̂+, and f̂ = ˆ̃a1/2q̂ . Because of the relation Ŵ = 2F̂ − 1, the

eigenspace of Ŵ with eigenvalue, +1, (F̂ = 1) is the fermionic subspace, and that of
the −1 eigenvalue (F̂ = 0) is the bosonic subspace. The SUSY transformation with
the supercharge operators connects the fermion and boson states:

Q̂

( |n, B〉
|n − 1/2, F〉

)
=

(
0

â1/2|n, B〉
)

=
(

0
2n

(2n−1/2)1/2
|n − 1/2, F〉

)

Q̂+
( |n, B〉

|n − 1/2, F〉
)

=
(

â+
1/2|n − 1/2, F〉

0

)
=

(
(2n − 1/2)1/2 |n, B〉

0

)

Clearly, Q̂ and Q̂+, as well as â1/2 and â+
1/2 play analogous roles in the transformation

from the boson sector to the fermion sector.

5 Coherent and supercoherent state theory for µ-wavelets

Coherent states can be viewed in various ways, [14–16], including as minimum uncer-
tainty states, as eigenstates of an annihilation operator, and as displacement operator
coherent states. Like the original SUSY harmonic oscillator, theμ-wavelets can be con-
sidered to involve both bosonic and fermionic degrees of freedom. The displacement
operator approach has been discussed in detail using a group-theoretical treatment
by Perelomov [16]. Our starting point is to construct the μ-wavelet coherent state
theory using the fractional annihilation operator, â1/2 rather than α̂μ, because α̂μ is a

composite of the two fractional lowering operators, â1/2, ˆ̃a1/2 for the μ-wavelet, (see
Eq. 27). To obtain the coherent states [14–16] for the μ-wavelets, we start by defining
them according to the usual sort of eigenvalue equation:

â1/2|α〉 = α|α〉, (72)

where α is a complex number given by

α = −i
( x

σ
+ iσk

)
. (73)

To solve the Eq. 72, we follow Perelomov [16];

|α〉 = eαâ+
1/2−βâ1/2||0〉

= e
−αβ

2 eαâ+
1/2 |0〉 β = σk
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= e
−αβ

2

∞∑
n=0

αn(â+
1/2)

n

n! |0〉

= e
−αβ

2

∞∑
n=0

π1/4αn{(n − 1/2)!}1/2

n!
∣∣∣n

2

〉
. (74)

We know that the terms in the sum for which n is even belong to the boson sector and
those for which n is odd belong to the fermion sector; that is,

|α〉B = |α〉n=even integers |α〉F = |α〉n=odd integers . (75)

Thus, the basic μ-wavelet coherent state, |α〉, is a sum of |α〉B and |α〉F . Now we
proceed to construct a μ-wavelet supercoherent state in a simple way. One can readily
establish the following relations:

â1/2|α〉B = α|α〉F â1/2|α〉F = α|α〉B . (76)

It follows that we can define a “super-lowering operator”, Â, as Â =
(

0 â1/2
â1/2 0

)
.

The super-coherent boson sector is |α〉B and its fermion sector is |α〉F . It is then easily
seen that

Â

( |α〉B

|α〉F

)
= α

( |α〉B

|α〉F

)
. (77)

It is also natural to define Â+ as

Â+ =
(

0 â+
1/2

â+
1/2 0

)
. (78)

It is again easily seen that the commutator [ Â, Â+] =
(

1 0
0 1

)
. Then the μ-wavelet

super-symmetric displacement operator is

D̂ (α, β) = eα Â+−β Â = eαβ/2eα Â+
e−β Â (79)

This is applied to the SUSY μ-wavelet ground state,

( |0〉
0

)
, which produces the

desired super-coherent state. Two interesting questions to be studied in subsequent
research are: (1) What are the coherent states generated by the composite operators

α̂μ and α̂+
μ ? (2) What is the role of the additional lowering operator ̂̃a1/2?
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6 Discussion

6.1 The μ-wavelet oscillator versus the harmonic oscillator

Although the fundamental origin of the μ-wavelet is from a constrained minimiza-
tion of the Heisenberg uncertainty product for the canonical position and momentum,
they can also be viewed as resulting from a (non-unitary) similarity transformation
of the harmonic oscillator. As is shown in the Appendix, the classical μ-wavelet
oscillator dynamics is also harmonic but with a modified frequency and time depen-
dence of the phase of the momentum, compared to the original harmonic oscillator.
Quantum mechanically, the energy and commutation relations are unchanged, but
additional ladder operators occur. A striking difference is also in the fact that the
uncertainty product for the μ-wavelet oscillator states increases much more slowly
with quantum number than the original HO. In particular, the uncertainty product
for the nth harmonic oscillator state varies as the first power of n, while that of the
μ-wavelet oscillator [32] varies as n1/2. Indeed, the uncertainty for sums of the first
Mμ-wavelets varies as M1/4. The uncertainty of the 300th HO state is 300.5 while
that of the μ-wavelet with M = 300 is of the order of 17. This suggests interest-
ing avenues for further research using the μ-wavelet ladder operators and Hamilto-
nians. In much research on the dynamics of systems immersed in a bath, the bath
is modeled by an assembly of harmonic oscillators (e.g., see the work of Caldeira
and Leggett [44]). It may be interesting to study such problems in which the usual
HO ladder operators are replaced by either of the pairs [45] â+

μ , âμ or â+
1/2, â1/2. In

addition, much work along these lines makes the approximation of treating the bath
as an assembly of classical HO’s. In this case, one might hope that using a clas-
sical μ-wavelet oscillator bath can lead to improved results, since on the basis of
the lower uncertainty product, the classical μ-wavelet bath should be a less severe
approximation.

The appearance of the new raising and lowering operators, â+
μ , âμ, â+

1/2,
ˆ̃a1/2, â1/2

makes possible a greater variety of SUSY versions of harmonic oscillators coupled to a
bath. Although the operator ˆ̃a1/2 can be eliminated from the Hamiltonian expressions,
it does not have to be. Additionally, it may prove interesting to introduce coupling
terms that involve this new lowering operator, in addition to the other fractional low-
ering operator. In light of the fact that the operator pair ˆ̃a1/2, â+

1/2 is associated with
fermion dynamics, while the other pair of fractional ladder operators are associated
with bosonic dynamics, this may give a simple means of exploring new types of cou-
pling between fermionic and bosonic degrees of freedom. Another important role of
the new lowering operators â1/2 and Â is in the construction of new coherent and
super-coherent states. Coherent states are important in many areas of physics. One of
these is in the development of semi-classical approximations [15,46] to path integrals.
In the Herman-Kluk [46] treatment, the coherent states are essentially used to filter
the path integral kernel and it would be of interest to use the coherent states based on
either μ-wavelets or sums of μ-wavelets to carry out such filtering. This would com-
bine both the minimum uncertainty feature with the ability to smoothly and arbitrarily
accurately approximate the ideal filter.
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6.2 Possible experimental realization of μ-wavelet oscillator systems

Another interesting question is whether an experimental realization of theseμ-wavelets
and fractional ladder operators is possible for photons and atoms. For example, can
one prepare optical supercoherent μ-wavelet states? In the past, there has been enor-
mous interest in preparing so-called “Gauss-Hermite” light pulses (such solutions of
Maxwell’s equations were discovered by A. E. Siegman [47–49]). It is easily seen that
the HDAFs are identical to Gauss-Hermite functions, although they were obtained
in a radically different fashion and with radically different motivations [32–35]. The
present approach is complementary to Siegman’s work and the fact that significant
progress has already been made in creating Gauss-Hermite pulses suggests that fur-
ther study is justified [47–49]. For example, we stress that the “natural” creation and
annihilation operators that manipulate such pulses had not been determined until the
present work. In addition, it is intriguing whether one can prepare atoms in these new
supercoherent states.

6.3 Similarity transformations

A fundamental axiom of quantum mechanics is that the allowed operators for the
Hamiltonian (or any observable) must be Hermitian. It is curious that harmonic oscil-
lation (see the Appendix on the classical limit of the μ-wavelet oscillator) also admits
of a non-Hermitian Hamiltonian, whose spectrum remains exactly the same as the
original Hamiltonian (due to the fact that the similarity transformation did not change
the spectrum). It should be possible to carry out such similarity transformations for
any standard Hermitian Hamiltonian system, leading to a non-Hermitian Hamilto-
nian operator. In the present case, the motivations for such a transformation are: (1)
The states have favorable uncertainties in x̂ and k̂ compared to the original harmonic
oscillator state. (2) It leads to new ladder operators that should describe a lower uncer-
tainty harmonic oscillator bath. (3) The new μ-wavelet raising and lowering opera-

tors
{
α̂μ, α̂

+
μ , â1/2, â+

1/2, Â, Â+
}

also lead to new coherent and super-coherent states,

which again have favorable uncertainty products when expressed in terms ofμ-wavelet
oscillator states. (4) It demonstrates the strong connection between theμ-wavelet oscil-
lator with SUSY-QM. In addition, the fact that there have already been attempts in
the laser physics community to prepare such pulses also would argue for the value of
such transformations [47–49].

6.4 The classical limit of the μ-wavelet harmonic oscillator

In the appendix to this paper, we have considered the classical limit of the μ-wavelet
harmonic oscillator. We show explicitly that the classical dynamics remains harmonic,
but there are significant changes in the phase behavior compared to the underlying
standard harmonic oscillator. First, it is found that the frequency of the μ-wavelet har-
monic oscillator is half that of the corresponding standard harmonic oscillator from
which it was derived. Second, the phase of the momentum of the μ-wavelet oscillator
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increases monotonically, while that of the canonically conjugate position has both
increasing and decreasing phase contributions. Thus, there is greater phase coherence
to the dynamics of the momentum in the μ-wavelet oscillator. We speculate that this
is a classical reflection of the fact that the μ-wavelet oscillator arises from squeezing
the uncertainty in position subject to a constraint that the new minimum uncertainty
state is not a Gaussian. In the constrained minimization procedure, one minimizes the
product of the total uncertainty in position and the uncertainty in momentum only
with respect to the added vector, |φσj 〉. Thus, in effect, the position is squeezed with
the minimum increase in the uncertainty in the momentum.
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Appendix

In this appendix, we consider the classical limit of the μ-wavelet harmonic oscillator.
It is important first to stress that in quantum systems, the similarity transformation,
although not unitary, preserves the commutation relations among the various relevant
raising and lowering operators (and between the position operator and its canoni-
cally conjugate momentum operator). On this basis, we conclude that the classical
transformation corresponding to the quantum similarity transformation must preserve
the canonical equations of motion (either in terms of the Hamiltonian or Lagrangian
formalisms). This is crucial since it ensures that the classical limit of the quantum
Hamiltonian will enable us to immediately obtain the correct equations of motion for
the transformed position and momentum. As mentioned in the main text of this paper,
the resulting classical transformation is an “extended canonical transformation”. In
fact, the classical limit of the μ-wavelet Hamiltonian is simply given as

lim
h̄→0

(
p̂2

2m
− iω

2
p̂x̂

)
= lim

h̄→0
Ĥ B
μ−wavelet = lim

h̄→0
Ĥ F(G)
μ−wavelet = Hμ−wavelet (80)

Hμ−wavelet = p̂2

2m
− iω

2
p̂x̂ . (81)

Thus, one simply reverses the usual procedure used to obtain the quantum Hamiltonian
from the classical one. Therefore, as h̄ → 0, x̂ and p̂ become the ordinary position
and momentum variables of Hamiltonian mechanics. Then the equations of motion
are

∂Hμ−wavelet

∂p
= ẋ (82)

∂Hμ−wavelet

∂x
= − ṗ (83)
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By Eq. 81, we find that

ẋ = p

m
− iω

2
x (84)

− ṗ = − iω

2
p (85)

Equation (84) shows that the momentum canonically conjugate to x given by

p(t) = mẋ + imω

2
x(t) (86)

It is trivial to solve Eq. 85 for p(t) with result

p(t) = p(0)eiωt/2. (87)

Similarly we can solve for x(t), to obtain

x(t) = x1(0)e
iωt/2 + x2(0)e

−iωt/2, (88)

where p(0), x1(0), x2(0) are constants of integration. Of course, they are not all inde-
pendent since only two constants of integration arise in solving the classical equations
of motion. Evaluating Eq. 86 at t = 0 yields

p(0) = miωx1(0). (89)

It is evident that the motion of the μ wavelet oscillator is harmonic. However, the
motion is different from that of the original harmonic oscillator in that the new canon-
ical momentum rotates in time with a monotonic increase in phase, while the time
change of position has both increasing and decreasing phase contributions, just as
for the original oscillator. In addition, the frequency of the motion is half that of the
original oscillator. Explicitly, the original oscillator has the solutions

Q(t) = Q1(0)e
iωt + Q2(0)e

iωt (90)

P(t) = imω[Q1(0)e
iωt − Q2(0)e

−iωt ]. (91)

It is then easy to display the explicit form of the extended canonical transformation
relating the new variables in terms of the old. We observe that

eiωt = imωQ(t)+ P(t)

2imωQ2(0)
(92)

e−iωt = imωQ(t)− P(t)

2imωQ2(0)
. (93)
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It is then seen that

p(t) = imωx1(0)

√
imωQ(t)+ P(t)

2imωQ2(0)
(94)

x(t) = x1(0)

√
imωQ(t)+ P(t)

2imωQ2(0)
+ x2(0)

√
imωQ(t)− P(t)

2imωQ2(0)
. (95)

Finally, it is of interest to determine the classicalμ-wavelet Lagrangian. We do this by
the usual device of a Legendre transformation of the classical μ-wavelet Hamiltonian.
Thus, we define

Lμ−wavelet = pẋ − Hμ−wavelet. (96)

Substituting Eq. 81 into 96, and using Eq. 86 to eliminate the variable p(t), we obtain

Lμ−wavelet = mẋ2

2
+ i

mω

2
ẋ x − mω2

8
x2. (97)

It is easily checked that this yields the correct canonical momentum:

∂Lμ−wavelet

∂ ẋ
= mẋ + imω

2
x ≡ p. (98)

Then the equation of motion is given by

∂

∂t

∂Lμ−wavelet

∂ ẋ
− ∂Lμ−wavelet

∂x
= mẍ + imω

4
x ≡ 0. (99)

It is easy to verify that the solution is identical to that resulting from the classical
Hamiltonian equations of motion.
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